Кузнецов О. А.

Термодинамика в нефтегазоперерабатывающей и химической промышленности: монография
 
 
ISBN: 978-5-4499-0080-7
УДК: 544.3(075)
ББК: 24.53
 
Москва, Берлин: Директ-Медиа, 2019
Number of pages: 165
 

No view is available.

Bibliographic description

Annotation
Для понимания основных процессов, применяемых в нефтегазоперерабатывающей и нефтехимической отраслях, необходимо знать термодинамику. Представленный материал освещает вопросы, касающиеся в первую очередь массообменных процессов. Изложенные методики поясняют, как работают современные программы для технологических расчётов процессов.
Рекомендуется для студентов и инженерно-технических работников.
Текст приводится в авторской редакции.

Contents

Список литературы

1. Hendric C. Van Ness, Michael M. Abbot, Thermodynamics, McGraw-Hill, New York, 2008.
2. Bruce A. Finlayson, Lorenz T. Biegler, Mathematics, McGraw-Hill, New York, 2008.
3. Abbott, M. M., and H. C. Van Ness, Schaum’s Outline of Theory and Problems of Thermodynamics, 2d ed., McGraw-Hill, New York, 1989.
4. Poling, B. E., J. M. Prausnitz, and J. P. O’Connell, The Properties of Gases and Liquids, 5th ed., McGraw-Hill, New York, 2001.
5. Prausnitz, J. M., R. N. Lichtenthaler, and E. G. de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, 3d ed., Prentice-Hall PTR, Upper Saddle River, N.J., 1999.
6. Sandler, S. I., Chemical and Engineering Thermodynamics, 3d ed., Wiley, New York, 1999.
7. Smith, J. M., H. C. Van Ness, and M. M. Abbott, Introduction to Chemical Engineering Thermodynamics, 7th ed., McGraw-Hill, New York, 2005.
8. Tester, J. W., and M. Modell, Thermodynamics and Its Applications, 3d ed., Prentice-Hall PTR, Upper Saddle River, N.J., 1997.
9. Van Ness, H. C., and M. M. Abbott, Classical Thermodynamics of Nonelectrolyte Solutions: With Applications to Phase Equilibria, McGraw-Hill, New York, 1982.
10. LongMeng, Yuan-Yuan Duan, Lei Li Correlations for second and third virial coefficients of pure fluids // Fluid Phase Equilibria 226: 109–120 (2004).
11. Pitzer K.S. Thermodynamics, McGraw-Hill, New York (1995)
12. Tsonopoulos C. An empirical correlation of second virial coefficients. AIChE J. 20: 263–272 (1974)
13. Tsonopoulos C. Second virial coefficients of polar haloalkanes. AIChE J. 21: 827–829 (1975)
14. Tsonopoulos C. Second virial coefficients of water pollutants. AIChE J. 24: 1112–1115 (1978)
15. Tsonopoulos C. Second virial cross-coefficients: correlation and prediction of kij. // Equations of state in engineering and research Adv. in Chemistry Series 182, pp. 143–162 (1979)
16. Hayden G., O’Connell J. A Generalized method for predicting second virial coefficients. Ind. Eng. Chem. Proc. Des. Dev. 14: 209–216 (1975)
17. Bishop K., O’Connell J. Aqueous Cross Second virial coefficient with the Hayden-O’Connell correlation // Ind. Eng. Chem. Res., 44: 630–633 (2005)
18. Orbey H., Vera J. Correlation for the third virial coefficient using TC, PC and ω as parameters // AIChE J. 29: 107–113 (1983)
19. Benedict M., Webb G. Rubin L. An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures I. methane, ethane, propane and n-butane. J. Chem. Phys. 8: 334–345 (1940).
20. Benedict M., Webb G. Rubin L. An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures II. Mixtures of methane, ethane, propane and n-butane. J. Chem. Phys. 10: 747–758 (1942)
21. Lee B., Kesler M. A generalized thermodynamic correlation based on three-parameter corresponding atates. AIChE J., 21: 510–527 (1975)
22. Redlich J., Kwong J. On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions. Chem. Rev., 44: 233–244 (1949)
23. Valderrama J. The state jf the cubic equations of state. Ind. Eng. Chem. Res. 42: 1603–1618 (2003)
24. Soave G. Equilibrim constants from a modified Redlich-Kwong equation. Chem. Eng. Sci. 27: 1197–1203 (1972)
25. Ding-Yu Peng, Donald B. Robinson. A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15: 59–64 (1976)
26. Perry’s chemical engineers’ Handbook 7 th edition (1997)
27. Riedel D. Kritischer Koeffizient, Dichte des gesättigten Dampfes und Verdampfungswärme. Untersuchungen über eine Erweiterung des Theorems der übereinstimmenden Zustände. / Chem. Ing. Tech. 26: 679-683 (1954)
28. Watson K. M. Thermodynamics of the Liquid State / Ind. Eng. Chem. 35: 398–406 (1943)
29. Redlich O., Kister A.T. Thermodynamics of solutions. Analysis of vapor-liquid equilibria. Chem. Eng. Progr. Symp. Ser. No. 2, 48: 49–61 (1952)
30. G.M. Wilson Vapor-Liquid Equilibrim.XI. A new expression for the Exess FreeEnergy of Mixing. J. Am. Chem. Soc. 86: 127−130 (1964)
31. Henri Renon, J.M. Prausnitz Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14: 135−144 (1968)
32. Abrams, D.S. and Prausnitz, J.M. Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems. AIChE Journal, 21, 116-128. (1975)
33. J. Gmehling, U. Onken, W. Arlt, P. Grenzheuser, U. Weidlich, B. Kolbe, J. Rarey Vapor-Liquid Equilibrium Data Collection, Chemistry Data Series, vol. 1, parts 1–8, DECHEMA, Frankfurt/Main (1974–1990)
34. A. Fredenslund, R. L. Jones, and J. M. Prausnitz, “Group-contribution estimation of activity coefficients in non ideal liquid mixtures,” AIChE Journal, vol. 21, no. 6, pp. 1086–1099, 1975.
35. Аа. Fredenslund, J. Gmehling, and P. Rasmussen, Vapor-Liquid Equilibrium Using UNIFAC, Elsevier, Amsterdam (1977)
36. T. Magnussen, P. Rasmussen, and A. Fredenslund, “UNIFAC parameter table for prediction of liquid-liquid equilibria,” Industrial & Engineering Chemistry Process Design and Development, vol. 20, no. 2, pp. 331–339, 1981.
37. Jürgen G. Gmehling, Thomas F. Anderson, John M. Prausnitz, Solid-Liquid Equilibria Using UNIFAC, Ind. Eng. Chem. Fundam. 17: 269–273 (1978)
38. Takeru Oishi, John M. Prausnitz, Estimation of Solvent Activities in Polymer Solutions Using a Group-Contribution Method, Ind. Eng. Chem. Process Des. Dev. 17: 333–339 (1978)
39. Torben Jensen, Aage Fredenslund, Peter Rasmussen Pure-component vapor pressures using UNIFAC group contribution, Ind. Eng. Chem. Fundam. 20: 239–246 (1981)
40. Bo Sander, Steen Skjold-Jørgensen, Peter Rasmussen, Gas solubility calculations. I. Unifac, Fluid Phase Equilib. 11: 105–126 (1983)
41. Dinh Dang, Dimitrios P. Tassios, Prediction of enthalpies of mixing with a UNIFAC model, Ind. Eng. Chem. Process Des. Dev. 25: 22–31 (1986)
42. Roland Wittig,Jürgen Lohmann, and Jürgen Gmehling, Vapor−Liquid Equilibria by UNIFAC Group Contribution. 6. Revision and Extension, Ind. Eng. Chem. Res. 42: 183–188 (2003)
43. Jürgen Gmehling, Roland Wittig,Jürgen Lohmann, and Ralph Joh, A Modified UNIFAC (Dortmund) Model. 4. Revision and Extension, Ind. Eng. Chem. Res. 41: 1678–1688 (2002)
44. Jeong Won Kang, Jens Abildskov, and Rafiqul Gani, Estimation of Mixture Properties from First- and Second-Order Group Contributions with the UNIFAC Model, Ind. Eng. Chem. Res. 41: 3260–3273 (2003)
45. Sven Horstmann, Anna Jabłoniec, Jörg Krafczyk, Kai Fischer, Jürgen Gmehling, PSRK group contribution equation of state: comprehensive revision and extension IV, including critical constants and α-function parameters for 1000 components. Fluid Phase Equilibria 227: 157–164 (2005)
46. J. Gmehling, U. Onken, W. Arlt, P. Grenzheuser, U. Weidlich, B. Kolbe, J. Rarey, Vapor-Liquid Data Collection, Chemistry Data Series, vol. 1, part 3, DECHEMA, Frankfurt/Main (1983)
47. Hendrick C. Van Ness, Thermodynamics in the treatment of (vapor + liquid) equilibria, J. Chem. Thermodyn. 27: 113–134 (1995);
48. H. C. Van Ness, Thermodynamics in the treatment of vapor/liquid equilibrium (VLE) data, Pure & Appl. Chem. 67: 859–872 (1995)].
49. Barker, J.A., (1953), Determination of Activity Coefficients from Total Pressure Measurements, Austral. J. Chem. 6, 207-210
50. Gmehling J. Vapor-Liquid Equilibrium Data Collection, Chemistry Data Series, vol. 1, parts 1–8, DECHEMA, Frankfurt am Main (1979–1990)
51. DePriеster, Chem. Eng. Progr. Symp. Ser. No. 7, 49: 1–43 (1953).
52. Twu, Sim, and Tassone, Chem. Eng. Progress 98:(11): 58–65 (Nov. 2002).
53. Van Ness and Abbott, Int. DATA Ser., Ser. A, Sel. Data Mixtures, 1978: 67 (1978)
54. John W. Morris, Patrick J. Mulvey, Michael M. Abbott, Hendrick C. Van Ness, Excess thermodynamic functions for ternary systems. I. Acetone-chloroform-methanol at 50.deg. J. Chem. Eng. Data 20: 403–405 (1975)
55. Richard A. Wilsak, Scott W. Campbell, George Thodos, Vapor—liquid equilibrium measurements for the methanol—acetone system at 372.8, 397.7 and 422.6 K, Fluid Phase Equilib. 28: 13–37 (1986)
56. Thomas Magnussen, Peter Rasmussen, and Aage Fredenslund. UNIFAC parameter table for prediction of liquid-liquid equilibriums. Ind. Eng. Chem. Process Des. Dev. 20: рр 331–339 (1981)
57. Jens M. Sørensen, Thomas Magnussen, Peter Rasmussen, Aage Fredenslund Liquid-liquid equilibrium data: Their retrieval, correlation and prediction Part I: Retrieval Fluid Phase Equilibria Volume 2, Issue 4, 1979, Pages 297-309.
58. Jens M. Sørensen, Thomas Magnussen, Peter Rasmussen, Aage Fredenslund Liquid—liquid equilibrium data: Their retrieval, correlation and prediction Part II: Correlation Fluid Phase Equilibria Volume 3, Issue 1, 1979, Pages 47-82
59. Jens M. Sørensen, Thomas Magnussen, Peter Rasmussen, Aage Fredenslund Liquid-liquid equilibrium data: Their retrieval, correlation and prediction Part III: Prediction Fluid Phase Equilibria Volume 4, Issues 1–2, 1980, Pages 151-163
60. Liquid-Liquid Equilibrium Data Collection, Chemistry Data Series, vol. 5, parts 1–3, DECHEMA, Frankfurt am Main (1979–1980)
61. The NBS tables of chemical thermodynamic properties J. Phys. Chem. Ref. Data 11, supp. 2 (1982).]
62. J. Carrero-Mantilla and M. Llano-Restrepo, Fluid Phase Equilib. 219: 181–193 (2004)
63. Iglesias-Silva et al. [Fluid Phase Equilib. 210: 229–245 (2003)
64. Sotyan, Ghajar, and Gasem Ind. Eng. Chem. Res. 42: 3786–3801 (2003).
65. Miller R.W., Sullivan J.D. Bureau of Mines Technical Paper 424 (1928)
66. Рид Р., Праусниц Дж., Шервуд Т. Свойства газов и жидкостей: Справочное пособие. – Л.: Химия, 1982. – 592 с.

MARC record